If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2+10t=0
a = 4; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·4·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*4}=\frac{-20}{8} =-2+1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*4}=\frac{0}{8} =0 $
| 6x-(x-5)=46 | | 2-3a+7=8a+3a | | 8-7b+3B=24 | | 3m+7m=-20 | | -23=-5-2v-4v | | 5x+6-7x=12 | | x-5/4=-11 | | 19.6=q+1 | | p+3=16.1 | | 9.6=k+1.6 | | (7x-1)/(-2)=18 | | 3y(5-8y)=0 | | 31y=186 | | p+377=869 | | 22+3n=52 | | 11x+21=8x+11 | | 7+1/3x=29 | | (2x+3)(2x+3)+(-6x-9)=2x(2x+3) | | -18+3x=-30 | | 28.5x^2-150=0 | | -33x=-31 | | -52.6x^2+1000=0 | | 3+4x=-7x+6x | | 3x^2-55.6x^2+1000=0 | | 3(6+3v)=72 | | e=-6(-13) | | 12-3k=k+1-1 | | (3x+20)=2x=180 | | -3k+5k=k | | L(17)=168-6f | | (5y-2)=10 | | -9x+3-12x-7+22x-21=-31 |